

Durotech Industries

Chemwatch: **5300-48**Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **10/04/2018** Print Date: **18/05/2018** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Duroprime M50		
Synonyms	18-009		
Proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains)		
Other means of identification	Not Available		

Relevant identified uses of the substance or mixture and uses advised against

Details of the supplier of the safety data sheet

Registered company name	Durotech Industries			
Address	Essex Street Minto NSW 2566 Australia			
Telephone	02 9603 1177			
Fax	02 9475 5059			
Website	www.durotechindustries.com.au			
Email	accounts@durotechindustries.com.au			

Emergency telephone number

	Association / Organisation	Not Available
-	Emergency telephone numbers	0421 670 636
	Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	S6
Classification [1]	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Respiratory Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

SIGNAL WORD	DANGER

Hazard statement(s)

H315	Causes skin irritation.			
H319	Causes serious eye irritation.			
H317	May cause an allergic skin reaction.			
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.			
H335	May cause respiratory irritation.			
H336	May cause drowsiness or dizziness.			
H304	May be fatal if swallowed and enters airways.			

Chemwatch: 5300-48 Version No: 2.1.1.1

Page 2 of 14

Duroprime M50

Issue Date: 10/04/2018 Print Date: 18/05/2018

H411	Foxic to aquatic life with long lasting effects.		
AUH066	Repeated exposure may cause skin dryness and cracking.		
Precautionary statement(s) Prevention			
P261	Avoid breathing mist/vapours/spray.		
P271	Use only outdoors or in a well-ventilated area.		
P280	Wear protective gloves/protective clothing/eye protection/face protection.		
P285 In case of inadequate ventilation wear respiratory protection.			
P273	Avoid release to the environment.		

Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P272

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.			
P304+P340	FINHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.			
P331	o NOT induce vomiting.			
P342+P311	experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.			
P362	ke off contaminated clothing and wash before reuse.			
P302+P352	F ON SKIN: Wash with plenty of soap and water.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P312	Call a POISON CENTER or doctor/physician if you feel unwell.			
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P391	Collect spillage.			

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
5873-54-1	10-30	2,4'-diphenylmethane diisocyanate	
64742-95-6.	<60	naphtha petroleum, light aromatic solvent	

SECTION 4 FIRST AID MEASURES

Description of first aid measures				
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.			
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.			
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. 			
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. 			

Issue Date: 10/04/2018
Print Date: 18/05/2018

- Avoid giving milk or oils
 - Avoid giving alcohol
 - ▶ If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology]

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For sub-chronic and chronic exposures to isocyanates:

- Fig. This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- ▶ Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts
- ▶ Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- ▶ Some cross-sensitivity occurs between different isocyanates
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Figure 1 Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- ▶ Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity.

[Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- F Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space.
- ▶ Cooling with flooding quantities of water reduces this risk.
- Water spray or fog may cause frothing and should be used in large quantities.
- Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area
- Fire Fighting

 Avoid spraying water onto liquid pools.
 - $\,\blacktriangleright\,$ DO NOT approach containers suspected to be hot.
 - ► Cool fire exposed containers with water spray from a protected location.
 - ▶ If safe to do so, remove containers from path of fire.
 - Combustible.
 - Moderate fire hazard when exposed to heat or flame.
 - When heated to high temperatures decomposes rapidly generating vapour which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapour.
 - Burns with acrid black smoke and poisonous fumes.
 - Due to reaction with water producing CO2-gas, a hazardous build-up of pressure could result if contaminated containers are re-sealed.
 - Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide.

Combustion products include:

Fire/Explosion Hazard

carbon dioxide (CO2)

, isocyanates

and minor amounts of

, hydrogen cyanide

, nitrogen oxides (NOx)

,

Continued...

Chemwatch: **5300-48**Page **4** of **14**Issue Date: **10/04/2018**Version No: **2.1.1.1**Print Date: **18/05/2018**

Duroprime M50

sulfur oxides (SOx)
, other pyrolysis products typical of burning organic material.
When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture.
Release of toxic and/or flammable isocyanate vapours may then occur

*3Z

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

Environmental hazard - contain spillage.

► Clean up all spills immediately.

- Avoid breathing vapours and contact with skin and eyes.
- ► Control personal contact with the substance, by using protective equipment.
- ▶ Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- ▶ Place in a suitable, labelled container for waste disposal

Environmental hazard - contain spillage.

► Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- ► Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- ► Control source of leakage (where applicable).
- ▶ Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- ► Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- ► Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. Completely cover decontaminant with vermiculite or other similar absorbent. After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- ► Decontaminate and remove personal protective equipment.
- ▶ Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Major Spills

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}. Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A:

liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100%

Formulation B

liquid surfactant 0.2-2% concentrated ammonia 3-8% water to 100% Formulation C ethanol, isopropanol or butanol 50% concentrated ammonia 5% water to 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- ▶ Avoid contamination with water, alkalies and detergent solutions.
- ▶ Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected.
- Open all containers with care.

. Moderate hazard.

- ► Clear area of personnel and move upwind.
- ► Alert Fire Brigade and tell them location and nature of hazard.

Chemwatch: 5300-48 Page 5 of 14 Issue Date: 10/04/2018

Version No: 2.1.1.1 Print Date: 18/05/2018 **Duroprime M50**

- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite
- ► Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

The conductivity of this material may make it a static accumulator.. A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same. A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

for commercial quantities of isocyanates

- ▶ Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- ▶ Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken
- ▶ Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
- Fransfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- Store in original containers.
- Keep containers securely sealed.
- ▶ Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- Metal can or drum
- Packaging as recommended by manufacturer
- Check all containers are clearly labelled and free from leaks.

▶ Avoid reaction with water, alcohols and detergent solutions.

- ▶ Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds
- Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming in confined spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- ▶ Do NOT reseal container if contamination is expected Open all containers with care

Storage incompatibility

- ▶ Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with
- Isocyanates will attack and embrittle some plastics and rubbers.
- A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present som danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Issue Date: 10/04/2018
Print Date: 18/05/2018

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	2,4'-diphenylmethane diisocyanate	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
2,4'-diphenylmethane diisocyanate	Isocyanate-bearing waste (as CNs N.O.S.)	6 mg/m3	8.3 mg/m3	50 mg/m3

Ingredient	Original IDLH	Revised IDLH
2,4'-diphenylmethane diisocyanate	Not Available	Not Available
naphtha petroleum, light aromatic solvent	Not Available	Not Available

MATERIAL DATA

for isocyanates:

Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. This should emphasise:

- demography, occupational and medical history and health advice
- · completion of a standardised respiratory questionnaire
- physical examination of the respiratory system and skin
- standardised respiratory function tests such as FEV1, FVC and FEV1/FVC

Various portable or stationary instruments are available for the continuous measurement of isocyanates in the air. All of them function on the principle of colourimetric evaluation of an indicator paper strip. They are operating continuously and unattended. Paper tape systems are easy to use and do not require skilled analysts to operate them. They give rapid results and are therefore suitable for leak detection and in emergency situations. However,:

- ▶ They may read incorrect at very high or very low humidity,
- are unsuitable for aerosols
- and may not be accepted for purposes of regulatory compliance.

Air monitoring of isocyanates requires sound analytical knowledge. In order to obtain reliable results only laboratories with experience in that specific area should be engaged with such measurements

Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties.

Odour Safety Factor (OSF)

OSF=0.042 (gasoline)

NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

- ▶ All processes in which isocyanates are used should be enclosed wherever possible.
- Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- ▶ Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- ► Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3–2007 or national equivalent).
- Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required.
- ▶ Spraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation.
- ▶ The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity	

Appropriate engineering controls

Chemwatch: 5300-48 Page 7 of 14 Issue Date: 10/04/2018 Version No: 2.1.1.1 Print Date: 18/05/2018

Duroprime M50

3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Personal protection Safety glasses with side shields Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the Eve and face protection class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below NOTE: Fig. The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Hands/feet protection Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Do NOT wear natural rubber (latex gloves). Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves. Protective gloves and overalls should be worn as specified in the appropriate national standard. Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated. NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates DO NOT use skin cream unless necessary and then use only minimum amount ▶ Isocyanate vapour may be absorbed into skin cream and this increases hazard. **Body protection** See Other protection below All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Other protection

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
 - ► P.V.C. apron.
 - Barrier cream.
 - Skin cleansing cream.
 - Eve wash unit.

Respiratory protection

Type A Filter of sufficient capacity, (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Issue Date: **10/04/2018**Print Date: **18/05/2018**

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

For spraying or operations which might generate aerosols:

Full face respirator with supplied air.

- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Brown or blue liquid; reacts with water.		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	< 10 cps @ 25 degC
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis: reduced alertness, loss of reflexes, lack of coordination

Chemwatch: 5300-48 Page 9 of 14

Issue Date: 10/04/2018 Version No: 2.1.1.1 Print Date: 18/05/2018 **Duroprime M50**

and vertigo.

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment.

Inhalation hazard is increased at higher temperatures.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Inhalation of aerosols (mists, furnes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis: serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Accidental ingestion of the material may be damaging to the health of the individual. Ingestion

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions, Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage.

Skin Contact

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Aromatic hydrocarbons may produce skin irritation, vasodilation with erythema and changes in endothelial cell permeability. Systemic intoxication, resulting from contact with the light aromatics, is unlikely due to the slow rate of permeation. Branching of the side chain appears to increase percutaneous absorption.

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Limited evidence or practical experience suggests, that the material may cause moderate eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged exposure may cause moderate inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Chronic

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates. [CCTRADE-Bayer, APMF]

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668.

Chemwatch: **5300-48**Page **10** of **14**Version No: **2.1.1.1**

Duroprime M50

2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species

kidney effects resulting from this mechanism are not relevant in human Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

Respiratory sensitisation may result in allergic/asthma like responses; from coughing and minor breathing difficulties to bronchitis with wheezing, gasping.

Duroprime M50	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
2,4'-diphenylmethane diisocyanate	Dermal (rabbit) LD50: 10000 mg/kg ^[1]	Not Available
unsocyanac	Oral (rat) LD50: >2000 mg/kg ^[1]	
	TOXICITY	IRRITATION
naphtha petroleum, light aromatic solvent	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Not Available
	Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2]	
	Oral (rat) LD50: >4500 mg/kg ^[1]	

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	✓

Legend:

— Data available but does not fill the criteria for classification
— Data available to make alongification

Issue Date: 10/04/2018

Print Date: 18/05/2018

✓ – Data available to make classification

Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Duroprime M50	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
O 41 diabam dan ath an a	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
2,4'-diphenylmethane diisocyanate	Not Available	Not Available	Not Available	Not Available	Not Available
naphtha petroleum, light aromatic solvent	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	EC50	48	Crustacea	=6.14mg/L	1
	EC50	72	Algae or other aquatic plants	3.29mg/L	1
	EC10	72	Algae or other aquatic plants	1.13mg/L	1
	NOEC	72	Algae or other aquatic plants	=1mg/L	1

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Issue Date: 10/04/2018
Print Date: 18/05/2018

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- redrowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- I lethal effects on fish by coating gill surfaces, preventing respiration
- ▶ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

Hydrolysis would represents the primary fate mechanism for the majority of the commercial isocyanate monomers, but, is tempered somewhat by the lack of water solubility. In the absence of hydrolysis, sorption to solids (e.g., sludge and sediments) will be the primary mechanism of removal. Hydrolysis products are predominantly insoluble stable polyureas.

Biodegradation is minimal for most compounds and volatilisation is negligible. Atmospheric degradation is not expected with removal from air occurring by washout or dry deposition. Volatilisation from surface waters (e.g., lakes and rivers) is expected to take years. In wastewater treatment this process is not expected to be significant.

Review of the estimated properties of the isocyanates suggest that sorption is the primary removal mechanism in the ambient environment and in wastewater treatment in the absence of significant hydrolysis. Sorption to solids in wastewater treatment is considered strong to very strong for most compounds. Sorption to sediments and soils in the ambient environment is very strong in most instances. Migration to groundwater and surface waters is not expected due to sorption or hydrolysis.

Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanates. However, the low to very low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates.

Aerobic and/or anaerobic biodegradation of the isocyanates is not expected to occur at significant levels. Most of the substances take several months to degrade.

Degradation of the hydrolysis products will occur at varying rates depending on the moiety formed.

For hydrocarbons:

Environmental fate:

The lower molecular weight hydrocarbons are expected to form a "slick" on the surface of waters after release in calm sea conditions. This is expected to evaporate and enter the atmosphere where it will be degraded through reaction with hydroxy radicals.

Some hydrocarbon will become associated with benthic sediments, and it is likely to be spread over a fairly wide area of sea floor. Marine sediments may be either aerobic or anaerobic. The material, in probability, is biodegradable, under aerobic conditions (isomerised olefins and alkenes show variable results). Evidence also suggests that the hydrocarbons may be degradable under anaerobic conditions although such degradation in benthic sediments may be a relatively slow process.

Under aerobic conditions hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes they produce water, methane and carbon dioxide.

Alkenes have low log octanol/water partition coefficients (Kow) of about 1 and estimated bioconcentration factors (BCF) of about 10; aromatics have intermediate values (log Kow values of 2-3 and BCF values of 20-200), while C5 and greater alkanes have fairly high values (log Kow values of about 3-4.5 and BCF values of 100-1,500

The estimated volatilisation half-lives for alkanes and benzene, toluene, ethylbenzene, xylene (BTEX) components were predicted as 7 days in ponds, 1.5 days in rivers, and 6 days in lakes. The volatilisation rate of naphthalene and its substituted derivatives were estimated to be slower.

Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media.

The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialised hydrocarbon degraders; and n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7.

All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs.

Atmospheric fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkenes, cycloalkenes, and substituted benzenes have half-lives of 1 day or less.

Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkenes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis.

Ecotoxicity:

Hydrocarbons are hydrophobic (high log Kow and low water solubility). Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. The hydrophobicity increases and water solubility decreases with increasing carbon number for a particular class of hydrocarbon. Substances with the same carbon number show increased hydrophobicity and decreased solubility with increasing saturation. Quantitative structure activity relationships (QSAR), relating both solubility and toxicity to Kow predict that the water solubility of single chemical substances decreases more rapidly with increasing Kow than does the acute toxicity.

Based on test results, as well as theoretical considerations, the potential for bioaccumulation may be high. Toxic effects are often observed in species such as blue mussel, daphnia, freshwater green algae, marine copepods and amphipods.

The values of log Kow for individual hydrocarbons increase with increasing carbon number within homologous series of generic types. Quantitative structure activity relationships (QSAR), relating log Kow values of single hydrocarbons to toxicity, show that water solubility decreases more rapidly with increasing Kow than does the concentration causing effects. This relationship varies somewhat with species of hydrocarbon, but it follows that there is a log Kow limit for hydrocarbons, above which, they will not exhibit acute toxicity; this limit is at a log Kow value of about 4 to 5. It has been confirmed experimentally that for fish and invertebrates, paraffinic hydrocarbons with a carbon number of 10 or higher (log Kow >5) show no acute toxicity and that alkylbenzenes with a carbon number of 14 or greater (log Kow >5) similarly show no acute toxicity.

QSAR equations for chronic toxicity also suggest that there should be a point where hydrocarbons with high log Kow values become so insoluble in water that they will not cause chronic toxicity, that is, that there is also a solubility cut-off for chronic toxicity. Thus, paraffinic hydrocarbons with carbon numbers of greater than 14 (log Kow >7.3) should show no measurable chronic toxicity. Experimental support for this cut-off is demonstrated by chronic toxicity studies on lubricant base oils and one "heavy" solvent grade (substances composed of paraffins of C20 and greater) which show no effects after exposures to concentrations well above solubility.

The initial criteria for classification of substances as dangerous to the aquatic environment are based upon acute toxicity data in fish, daphnids and algae. However, for substances that have low solubility and show no acute toxicity, the possibility of a long-term or chronic hazard to the environment is recognised in the R53 phrase or so-called "safety net". The R53 assignment for possible long-term harm is a surrogate for chronic toxicity test results and is triggered by substances that are both bioaccumulative and persistent. The indicators of bioaccumulation and persistence are taken as a BCF > 100 (or log Kow > 3 if no BCF data) and lack of ready biodegradability. For low solubility substances which have direct chronic toxicity data demonstrating no chronic toxicity at 1 mg/L or higher, these data take precedence such that no classification for long term toxicity is required.

Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.). **DO NOT** discharge into sewer or waterways.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
2,4'-diphenylmethane diisocyanate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
2,4'-diphenylmethane diisocyanate	HIGH (LogKOW = 5.4481)

Mobility in soil

Ingredient	Mobility
2,4'-diphenylmethane diisocyanate	LOW (KOC = 384000)

Issue Date: 10/04/2018 Print Date: 18/05/2018

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ► DO NOT recycle spilled material.
- · Consult State Land Waste Management Authority for disposal.
- Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- ▶ DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers.
- Puncture containers to prevent re-use.
- ▶ Bury or incinerate residues at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

NO

•3Z

Marine Pollutant

HAZCHEM

Land transport (DOT)

UN number	3082		
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains)		
Transport hazard class(es)	Class 9 Subrisk Not Applicable		
Packing group			
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 274 331 335 375 AU01 Limited quantity 5 L		

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082

are not subject to this Code when transported by road or rail in;

(a) packagings;

(b) IBCs; or

(c) any other receptacle not exceeding 500 kg(L).

- Australian Special Provisions (SP AU01) - ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

UN number	3082	
UN proper shipping name	Environmentally hazardo	ous substance, liquid
	ICAO/IATA Class	9
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable
	ERG Code	9L

Version No: 2.1.1.1

Duroprime M50

Issue Date: **10/04/2018**Print Date: **18/05/2018**

Packing group	III		
Environmental hazard	Environmentally hazardous		
	Special provisions	A97 A158 A197	
	Cargo Only Packing Instructions	964	
	Cargo Only Maximum Qty / Pack	450 L	
Special precautions for user	Passenger and Cargo Packing Instructions	964	
	Passenger and Cargo Maximum Qty / Pack	450 L	
	Passenger and Cargo Limited Quantity Packing Instructions	Y964	
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G	

Sea transport (IMDG-Code / GGVSee)

UN number	3082		
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains)		
Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Marine Pollutant		
Special precautions for user	EMS Number F-A , S-F Special provisions 274 335 969 Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

2,4'-DIPHENYLMETHANE DIISOCYANATE(5873-54-1) IS FOUND ON THE FOLLOWING REC	GULATORY LISTS
Australia Exposure Standards	Australia Standard
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	F (Part 3)

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
Australia Standard for the Lightern School line of Medicines and Reigner (SLISMR). Appendix

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\ensuremath{\mathbf{6}}$

Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT(64742-95-6.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (naphtha petroleum, light aromatic solvent; 2,4'-diphenylmethane diisocyanate)
China - IECSC	Y
Europe - EINEC / ELINCS / NLP	Υ
Japan - ENCS	Υ
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	Y
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	10/04/2018
Initial Date	Not Available

Other information

Ingredients with multiple cas numbers

Name	CAS No

 Chemwatch: 5300-48
 Page 14 of 14
 Issue Date: 10/04/2018

 Version No: 2.1.1.1
 Print Date: 18/05/2018

Duroprime M50

naphtha petroleum, light aromatic solvent

64742-95-6., 25550-14-5.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.